Alfriston School

Whole School Written Calculation Policy January 2015

Pencil and paper procedures
Key Stages 1 and 2

PROGRESSION OF NUMBERLINES

Number track	Has the numbers inside the sections, rather than on the divisions	0	1	2	3	4	5	6	7	8	9	10
Calibrated, numbered numberline	Equal divisions marked on the numberline and each division is numbered						5	6	7	8		10
Calibrated, unnumbered numberline	Equal divisions are marked, but left unnumbered for children to add relevant numbers to											
Blank numberline	No divisions or numbers marked for the children											

Using Numicon to support the teaching and learning of mathematics. Use Numicon to support the models and images for the 4 operations of number.

Addition

Stage 4

Subtraction

$-=$ signs and missing numbers	
$7-3=\square$	$\square=7-3$
$7-\square=4$	$4=\square-3$
$\square-3=4$	$4=7-\square$
$\square-\nabla=4$	$4=\square-\nabla$

Visual / practical activities
 Number lines

The difference between 7 and 11
(Counting on)
To reinforce concept. Practical strategies essential to see 'difference'.

Recording by - drawing jumps on prepared lines constructing own lines, if appropriate
(Teachers model jottings appropriate for larger numbers)

= signs and missing numbers

Continue using a range of equations as in Stage 1 but with appropriate numbers
Using a Hundred Square:

Leading to:
$47-32=$

$$
\begin{aligned}
& 40-30=10 \\
& 7-2=5 \\
& 10+5=15
\end{aligned}
$$

When children are confident in using a hundred square and have a good understanding of place value, they can then begin to partition.

This involves partitioning the numbersinto 10 s and units and subtracting these. Then recombining the 10 s and ynits. to get an answer.

Children will begin to use blank number lines to support calculations.

Counting back

First counting back in tens and then in ones.
$47-23=24$

Find a small difference by counting up

Continue as in Stage 2 but with appropriate numbers e.g. $102-97=5$

Counting back using a number line.

We will be using a number ine to count back from the biggest numbe using portitioning to help.

Note: Counting back is not always the most efficien method when the numbers are closer together.

Subtraction

Stage 4

Stage 1	Stage 2	Stage 3
Pictures and symbols There are 3 sweets in one bag. How many sweets are there in 5 bags? (Recording on a number line modelled by the teacher when solving problems) Use of bead strings to model groups of. Use cubes and pegs. Begin to learn 2, 5 and 10 times tables.	$\begin{array}{lr} \hline \mathbf{x}=\text { signs and missing numbers } \\ \hline 7 \times 2=\square & \square=2 \times 7 \\ 7 \times \square=14 & 14=\square \times 7 \\ \square \times 2=14 & 14=2 \times \square \\ \square \times \nabla=14 & 14=\square \times \nabla \end{array}$ Arrays and repeated addition $\bullet \bullet \bullet \quad \bullet \times 2$ or $4+4$ 2×4 or repeated addition $2+2+2+2$ Doubling multiples of 5 up to 50 $15 \times 2=30$ Partition $\begin{aligned} & (10 \times 2)+(5 \times 2) \\ & 20+10=30 \end{aligned}$	$\underline{x}=$ signs and missing numbers Continue using a range of equations as in Stage 2 but with appropriate numbers. Repeated addition using a number line. Understanding multiplication as repeated addition is key to understanding formal methods of multiplication. Add 7 lits of 6 $35 \times 2=70$ Partition using Grid Method

Expanded vertical column multiplication:

$t u$
26

To support understanding and progression the grid method, expanded and compact methods should be shown side-by-side to emphasise the links between the different formats.

To support understanding and progression the grid method, expanded and compact methods should be shown side-by-side to emphasise the links between the different formats.

Accurate use of the language of place value when carrying will support pupil progression and understanding.
" 6 multiplied by 7 equals 42 . Four tens and two units/ones"
Avoid 'carrying' stories such as 'put the milk bottles on the next door step' it is much more effective to use the language of place value.

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Division} \\
\hline Stage 1 \& Stage 2 \& Stage 3 \\
\hline \begin{tabular}{l}
Pictures / marks \\
12 children get into teams of 4 to play a game. How many teams are there? \\
The bead bar will help children with interprefing division calculations such as \(10 \div 5\) as 'how many 5 s make 10 ?' \\
Use practical resources - cubes, counters, children etc
\end{tabular} \& \begin{tabular}{l}
\(\vdots=\) signs and missing numbers
\[
\begin{array}{ll}
6 \div 2=\square \& \square=6 \div 2 \\
6 \div \square=3 \& 3=6 \div \square \\
\square \div 2=3 \& 3=\square \div 2 \\
\square \div \nabla=3 \& 3=\square \div \nabla
\end{array}
\] \\
Understand division as sharing and grouping \\
Grouping or repeated subtraction \\
There are 6 sweets, how many people can have 2 sweets each?

Repeated subtraction using a number line and bead bar

$$
12 \div 3=4
$$

$$
\begin{array}{lllllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12
\end{array}
$$

 \&

\doteqdot = signs and missing numbers

Continue using a range of equations as in Stage 2 but with appropriate numbers.

Understand division as sharing and grouping

Understanding division as repeated subtraction nis key to understanding formal methods of division.

$$
56 \div 8=7 \quad \text { Repeatedly subtract } 8
$$

Subtract until it is no longer possible.

7 lots of 8 have been taken away.
\end{tabular}

\hline
\end{tabular}

Division

Stage 4

$\div=$ signs and missing numbers

By using known times table facts shortcuts can be taken to reduce the number of steps needed to divide.

Subtract 5 lots
of 8 in ona go.)
$>$

Subtract 8 until
it is no longer possible.

Divisionwithremoinders. $42 \div 8=5 \mathrm{~m} 2 \quad$ Subthact 5 lotts of 8 .

Stage 5

$\div=$ signs and missing numbers

Quotients expressed as fractions or decimal fraction $61 \div 4=15 \frac{1}{4}$ or 15.25

Iepeated wbtroction using limes table locts.

Using known times toble facts allows chidren to subtract larges 'churia' from the origingl numbet. Childen will be performing divition where there are remainders

Chunking using fimes loble focts.
Once ohildren are comfortable with aivision as repeated subtraction they can start to use more a move formallorout When chidtencre
comfortable with the layout they con begin to use their ten times fable to outhoct in larger churks.
>

Stage 6

$\doteqdot=$ signs and missing numbers

Remainders

Quotients expressed as fractions or decimal fractions $676 \div 8=84.5$

Chunking using limes table fach.
Children will continue to explere division as repeated subtraction. They Will use their increaning knowledge of times tables to subtract in larger bhunk. $\quad 128 \div 7=18 \mathrm{~m} 2$

Chunking using times table facts and multiples of 10
Using their knowledge of the 10 times table will allow children to divide larger numbers by two-digit numbers while reducing the number of steps.

$$
197 \div 12=16 r 5
$$

$>$

Expressing the remainder as a fraction.

$$
\begin{aligned}
& \begin{aligned}
& 50 \div 4=12 \sim 2 \\
&=12 \frac{2}{4} \text { - The nemainder. } \\
& \text { This can divisar. } \\
& \text { then be cornmented. } \\
& \text { into a decimal. }
\end{aligned} \text {. }
\end{aligned}
$$

Short division

$98 \div 7$ becomes

Answer: 14

Answer: 86 remainder 2
$496 \div 11$ becomes

Answer: $45 \frac{1}{11}$

Long division

$432 \div 15$ becomes
$1 \begin{array}{ccccc} & & 2 & 8 & r 12 \\ & & 4 & 3 & 2 \\ 3 & 0 & 0 & \\ & & 1 & 3 & 2 \\ & 1 & 2 & 0 & \\ & & 1 & 2\end{array}$

Answer: 28 remainder 12
$432 \div 15$ becomes

			2	8
	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$
	3	0	0	
	15×20			
	1	3	2	
	1	2	0	15×8
		1	2	

$$
\frac{12}{15}=\frac{4}{5}
$$

Answer: $28 \frac{4}{5}$
$432 \div 15$ becomes

Answer: 28.8

