Year 1

Children should understand when to and be able to apply these strategies:

- reorder numbers when adding, e.g. put the larger number first
- count on or back in ones, twos or tens
- partition small numbers, e.g. $8+3=8+2+1$
- partition and combine tens and ones
- partition: double and adjust, e.g. $5+6=5+5+1$

Year 2

Children should understand when to and be able to apply these strategies:

- reorder numbers when adding
- partition: bridge through 10 and multiples of 10 when adding and subtracting
- partition and combine multiples of tens and ones
- use knowledge of pairs making 10
- partition: count on in tens and ones to find the total
- partition: count on or back in tens and ones to find the difference
- partition: add a multiple of 10 and adjust by 1
- partition: double and adjust

Year 3:
Children should understand when to and be able to apply these strategies:

- reorder numbers when adding
- identify pairs totalling 10 or multiples of 10
- partition: add tens and ones separately, then recombine
- partition: count on in tens and ones to find the total
- partition: count on or back in tens and ones to find the difference
- partition: add or subtract 10 or 20 and adjust
- partition: double and adjust
- partition: count on or back in minutes and hours, bridging through 60 (analogue times)

Year 4

Children should understand when to and be able to apply these strategies:

- count on or back in hundreds, tens and ones
- partition: add tens and ones separately, then recombine
- partition: subtract tens and then ones, e.g. subtracting 27 by subtracting 20 then 7
- subtract by counting up from the smaller to the larger number
- partition: add or subtract a multiple of 10 and adjust, e.g. $56+29=56+30-1$, or $86-38=86-40+2$
- partition: double and adjust
- use knowledge of place value and related calculations, e.g. work out $140+150=290$ using $14+15=29$
- partition: count on or back in minutes and hours, bridging through 60 (analogue and digital times)

Year 5

Children should understand when to and be able to apply these strategies:

- count on or back in hundreds, tens, ones and tenths
- partition: add hundreds, tens or ones separately, then recombine
- subtract by counting up from the smaller to the larger number
- add or subtract a multiple of 10 or 100 and adjust
- partition: double and adjust
- use knowledge of place value and related calculations, e.g. 6.3-4.8 using $63-48$
- partition: count on or back in minutes and hours, bridging through 60 (analogue and digital times)

Children should understand when to and be able to apply these strategies:

- count on or back in hundreds, tens, ones, tenths and hundredths
- use knowledge of place value and related calculations, e.g. $680+430,6.8+4.3,0.68+0.43$ can all be worked out using the related calculation $68+43$
- use knowledge of place value and of doubles of two-digit whole numbers
- partition: double and adjust
- partition: add or subtract a whole number and adjust, e.g. $4.3+2.9=4.3+3-0.1,6.5-3.8=6.5-4+0.2$
- partition: count on or back in minutes and hours, bridging through 60 (analogue and digital times, 12 -hour and 24 - hour clock)

Mental Method Strategies

Multiplication and Division
Year 1
Children should understand when to and be able to apply these strategies:

- use patterns of last digits, e.g. 0 and 5 when counting in fives

Year 2

Children should understand when to and be able to apply these strategies:

- partition: double the tens and ones separately, then recombine
- use knowledge that halving is the inverse of doubling and that doubling is equivalent to multiplying by two
- use knowledge of multiplication facts from the 2,5 and 10 times-tables, e.g. recognise that there are 15 objects altogether because there are three groups of five

Year 3

Children should understand when to and be able to apply these strategies:

- partition: when doubling, double the tens and ones separately, then recombine
- partition: when halving, halve the tens and ones separately, then recombine
- use knowledge that halving and doubling are inverse operations
- recognise that finding a unit fraction is equivalent to dividing by the denominator and use knowledge of division facts
- recognise that when multiplying by 10 or 100 the digits move one or two places to the left and zero is used as a place holder

Year 4

Children should understand when to and be able to apply these strategies:

- partition: double or halve the tens and ones separately, then recombine
- use understanding that when a number is multiplied or divided by 10 or 100 , its digits move one or two places to the left or the right and zero is used as a place holder
- use knowledge of multiplication facts and place value, e.g. $7 \times 8=56$ to find $70 \times 8,7 \times 80$
- use partitioning and the distributive law to multiply,
e.g. $13 \times 4=(10+3) \times 4=(10 \times 4)+(3 \times 4)=40+12=52$

Year 5

Children should understand when to and be able to apply these strategies:

- multiply or divide by 4 or 8 by repeated doubling or halving
- form an equivalent calculation, e.g. to multiply by 5 , multiply by 10 , then halve; to multiply by 20 , double, then multiply by 10
- use knowledge of doubles/ halves and understanding of place value, e.g. when multiplying by 50 multiply by 100 and divide by 2
- use knowledge of division facts, e.g. when carrying out a division to find a remainder
- use understanding that when a number is multiplied or divided by 10 or 100 , its digits move one or two places to the left or the right relative to the decimal point, and zero is used as a place holder
- use knowledge of multiplication and division facts and understanding of place value, e.g. when calculating with multiples of 10
- use knowledge of equivalence between fractions and percentages, e.g. to find $50 \%, 25 \%$ and 10%
- use knowledge of multiplication and division facts to find factor pairs

Children should understand when to and be able to apply these strategies:

- partition: use partitioning and the distributive law to divide tens and ones separately, e.g. $92 \div 4=(80+12) \div 4=20+3=23$
- form an equivalent calculation,
e.g. to divide by 25 , divide by 100 , then multiply by 4 ; to divide by 50 , divide by 100 , then double
- use knowledge of the equivalence between fractions and percentages and the relationship between fractions and division
- recognise how to scale up or down using multiplication and division,
e.g. if three oranges cost $24 p$: one orange costs $24 \div 3=8 p$ four oranges cost $8 \times 4=32 p$
- Use knowledge of multiplication and division facts to identify factor pairs and numbers with only two factors

